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Introduction

The three-dimensional structure of RNA molecules is crucial to their function. The
primary structure is determined by the sequence of G, A, C, and U bases in a strand.
Secondary structure consists of hydrogen-bonded base pairings between complimentary
bases (G and C or A and U typically, or G and U non-canonically) and the loops formed
by unpaired bases. Secondary structure is determined discretely: each base is either
paired or not. An example of an RNA secondary structure is shown in Figure 1. Tertiary
structure is made up of interactions between secondary structures, generally through
formation of additional hydrogen bonds or hydrophobic interactions. The interactions
that determine secondary structure are generally significantly stronger than those
governing tertiary structure because. There are no continuously varying parameters such
as bond lengths, angles, or interatomic distances, which must be accounted for in tertiary
structure. It is generally assumed that the influence of tertiary structure on secondary
structure is negligible; consequentially, secondary structures can be determined
independently of tertiary structures.

Myriad algorithms have been developed for the prediction of RNA secondary structure
from its primary sequence. In theory, the number of valid secondary structures for a
given sequence is greater than 1.8, where N is the number of nucleotides (Zuker, ef al.,
1991). Most folding programs fit into one or more of four classes: (1) “Basic"
algorithms predict hairpin and simple loop formation, but they exclude the prediction of
multibranched loops and perform very basic energy minimization. The first algorithms
written were of this type, and most have been updated or are no longer in use. (2)
"Combinatorial" methods generate lists of all possible secondary structure elements and
piece them together in all possible ways to find those with the lowest free energy. (3)
"Recursive" algorithms build the secondary structure one nucleotide at a time while
computing minimum energies along the way. Dynamic programs, which employ
recursive algorithms, compute folding in time based on low energy paths of achieving
secondary structure. (4) “Comparative sequence analysis" algorithms find conserved
structure for a set of sequences using stochastic optimization on a population of tentative
solutions.

Despite their success, current secondary structure methods tend to have problems in
several areas. Most significantly, many different foldings are possible near the energy
minimum, and it is difficult or impossible to determine which of these "suboptimal" folds
is correct. For example, for the 5.8S RNA from C. cohnii, the minimum energy folding



Figure 1. Folding of a sample RNA. Several
different loop types occur and are designated
by letters: B = bulge loop; I = interior loop; H
= hairpin loop; M = multibranched loop.
Unmarked areas are stacking regions between
base hydrogen bonded base pairs.

and an alternative folding with less than 5% energy difference do not have a single base
pair in common (Zuker, 1989b). Secondly, the energy minimization rules are derived
from melting data on small oligonucleotides, and may not be completely accurate for
large RNAs. Any algorithm that relies on free energy minimization to achieve an optimal
structure is only as good as the thermodynamic parameters used, and in some cases the
values may not be totally reliable. Furthermore, most current algorithms assume that the
total free energy of an RNA secondary structure can be computed by summing the
contributions of the components, but this may not be accurate in many cases.

Free Energy Minimization

Most RNA secondary structure prediction algorithms perform thermodynamic
optimization on a series of plausible structures in order to obtain the structure or
structures with the lowest equilibrium free energy. Basic thermodynamic principles
indicate that the structure lowest in free energy should be the most stable and barring
outside influences, the correct fold. Unfortunately, not all of the factors that determine
the energy of a fold are understood, and computational time limitations would make it
infeasible to include all of such influences. Current methods ignore free energy
contributions from tertiary structure, a reasonable assumption because the forces
determining tertiary structure are weaker than those governing secondary. However,
tertiary structure contributions may play an increasing role as the length of the RNA
strand is increased, because more complex folds are possible. The values for such
contributions have not been determined.

The free energy of a secondary structure is determined by summing the energy
contributions of all base pairs, loops, hairpins, etc. Energy contributions have been
shown to be additive for short oligonucleotides in melting studies, but the free energies
for longer RNA strands (>50-100 nucleotides) have not been empirically determined.
Values for contributions of individual secondary structure elements were determined by
melting studies with short oligonucleotides (Freier, ef al., 1986). For simple base-pairing
energies, the “individual nearest neighbor” (INN) method has long been used, but has
been updated recently to improve the accuracy of values (Xia, ef al., 1998). The nearest
neighbor approach assumes that the thermodynamic stability of a base pair is solely



dependent on the identity of adjacent bases. Thus, thermodynamic contributions from
both base pairing and base stacking are considered.

Thermodynamic properties were obtained by plotting melting data from short RNA
duplexes (4-10 base pairs). Thermodynamic values are related to the melting data by the
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a is the fraction of total single strand in the duplex as a function of temperature, and a is
a constant equal tol for self-complimentary strands or 4 for non-self-complimentary
strands. Thermodynamic parameters were derived from these experiements (see Table
1). For repeated experiments, the measured values for AG®, AH®, and AS° for each
nearest neighbor set are predicted within 3.2%, 6.0%, and 6.8, respectively (Xia, et al.,

1998).

Table 1. RNA Thermodynamic Parameters for Nearest -
Neighbor Model, 1 M NaCl, pH 7 (Xia,et al., 1998)

Al AS P
parameters {keal/mol) {keal/mol) {eu)
SAAY —0.93 (0.03) —06.82(0.79) —19.0(2.5)
ek
SAUY — L 10(0.08)  —938(Lo8) —26.7(52)
VUAS
¥ =133 (0.00)  —T7.60(2.02) —20.5(6.3)
—208(0.06) —1048(1.24) —27.1(3.8)
3 —211(0.07) —10.44(1.28) —26.9(3.9)
13 —224(0.06) —1140(1.23) —295(3.9)
¥ —235(0.06) —12.4401.20) —325(3T)
i3 —236(0.00) —10.64(165) —26.7(5.0)
i3 —326(0.07) —1339(1.24) —32.7(3.8)
3" —342 (0.08) —14.88(1.58) —36.9(4.9)
L. XCGS - -
initiation’ 4.00(0.22) 360412y —15(12.7)
per terminal AL 0.459(0.04)  3.729(0.83)  10.59(2.6)
symmetry correction 0.43 1] —14
(self-complementary)
symmelry correction 0 a 0
(non-self-complementary)
“ Numbers in parentheses are uncertainties for parameters. * Calcu-
lated from nearest-neighbor parameters for AG s and AH™ (see
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(Zuker, et al., 1991).
provide sufficient approximations; however, better size- and sequence-based parameters
would be extremely useful in determining suboptimal structures which are very close to
the lowest energy structure.

Theromodynamic parameters for loops were
determined analogously from additional
melting data. The stability of hairpins,
bulges, and other loops is largely dependent
on four factors: (1) sequence of the loop, (2)
nucleotides adjacent to and closing the loop,
(3) nearby sequences not adjacent to the
loop, and (4) size and shape of the loop
(Serra and Turner, 1995; Longfellow, ef al.,
1990; Giese, et al., 1998; Serra, et al.,
1997). The accuracy of the melting data
when applied to very large loops is
unknown; for example, widely used
thermodynamic parameters for hairpins
come from melting studies on hairpins of
only six nucleotides (Serra, et al., 1994),
while hairpins of over 50 nucleotides are
known. Data have suggested that very small
changes in energy parameters often result in
very large changes in predicted folding

The thermodynamic values determined in these studies may

Determination of Suboptimal Folds: Combinatorial and Recursive Algorithms



Combinatorial and recursive folding algorithms are capable of finding minimum energy
secondary structures, while comparative sequence analysis algorithms find
phylogenically conserved structures. The combinatorial method forms structures by
combining all possible helices in all possible ways, thereby predicting a series of folds
(Dumas and Ninio 1982). Unfortunately, programs like this are extremely time
consuming and require a great deal of computer memory, since the number of potential
folds increases exponentially with the length of the sequence. Most combinatorial
programs are limited to folding about 200 nucleotides. Structures with energy near the
minimum can be reported, but in many cases too many folds within a reasonable
threshold are available, making it difficult to make any statistical or biological sense of
them.

Recursive algorithms work in two stages. The first part, known as the “fill”, starts with
small fragments (usually pentanucleotides) and builds up to larger segments in a
recursive fashion by iteratively minimizing the free energy. Ultimately, the fill computes
and stores minimum folding energies for all fragments of the sequence. Next, the
“traceback” computes a minimum energy structure by searching through the matrix of
stored energies and combinig compatible fragments. Recursive algorithms can be much
faster than combinatorial algorithms; at best they may determine secondary structures in
time proportional to the cube of the sequence length (Zuker, 1989b).

Unfortunately, the process of recursively optimizing RNA secondary structures only
allows determination of one optimized structure. Researchers have attempted to deal
with this problem in a number of ways. One method that at first seems reasonable is to
perturb the thermodynamic parameters. However, the suboptimal folds generated would
be highly sensitive to the design of the perturbation algorithm rather than having any real
statistical significance. Another possibility is to take a standard recursive algorithm and
set a threshold energy level in order to output all structures with energies below the
threshold. However, if the threshold is set too low not much variation is possible, and if
it is set too high, too many structures may be generated for reasonable evaluation. For a
sequence of about 400 nucleotides, a structure that is about 80% correct can be found
from a group of about 20 structures within 5% of the lowest free energy structure, while
the single best structure is generally within 2% of the free energy of the optimal structure
(Zuker, et al., 1991).

The first successful recursive suboptimal folding algorithm was designed by applying
observations about circular RNA to linear RNA (Zuker, 1989b). The choice of an origin
is arbitrary in circular RNA, so in a circular RNA composed of ribonucleotides 1y, 13...15,
a base pair linking r; and r; divides the secondary structure into two segments: from r; to r;
and from r; to the origin r;. It is apparent that a recursive algorithm could find many folds
for circular RNA simply by starting at different origins. This principle can be
generalized to linear RNA simply by considering the first and last bases to be adjacent
and allowing them to pair with each other if necessary.

The minimum free energies of the two segments, V(i,j) and V(j,i), can be added to
determine the minimum energy for a structure containing the r-r; base pair. The



minimum value of V(i,j) + V(j,1) across all possible base pairs ;-1 is the minimum
folding energy, Enin. To obtain suboptimal folds, the algorithm looks for base pairs for
which V(i,j) + V(j,1) is close to Enin. Rather than simply choosing structures within a
fixed value of E,in, however, the algorithm generates optimal and suboptimal structures
by choosing an optimal or suboptimal base pair (a base pair that fits certain probabilistic
criteria, described in detail in Zuker, 1989b), and computing the best folding for that base
pair. The result is that not all possible structures need to be computed, which speeds up
computational time compared to combinatorial programs. Structures with at least 5 to
10% variation from the minimum energy structure are determined.

Comparative Sequence Analysis Algorithms

The folds of structural RNAs (tRNAs and rRNAs) are highly conserved among all
kingdoms of life and have been widely used to determine phylogenic relationships
between different species (Kumar and Rzhetsky, 1996). One way to predict the fold of
structural RNA’s is through phylogenic-comparative analysis. Most algorithms of this
type rely on an analysis of aligned nucleotide sequences to determine conserved regions
of secondary structure.

This approach is governed by the assumption that mutations that disrupt Watson-Crick
base pairs have a negative effect which may be overcome by a second compensatory
mutation in the other half of the stem, restoring the base pair. This sort of evolution
results in a pattern of nucleotide substitutions, called covariations, that can be detected in
sequence alignments of homologous RNA sequences from different species. A covarying
site is one that may differ between species but maintains its potential to form a base pair
(e.g., GC in one species replaced by AU in another).

A major problem with early comparative sequence analysis algorithms was that
phylogenic relationships of the aligned sequences and levels of sequence divergence were
not considered. One way this problem has been overcome is by generating a pairing
parameter A which measures the pattern of nucleotide substitution at paired sites verus
those at unpaired sites in order to make quantitative comparisons in evolutionary
conservation (Muse, 1995) . This “likelihood-ratio test” (LRT) approach has the severe
drawback that its statistical significance is questionable for helices less than 10 base pairs
in length (Parsch, et al., 2000). Numerical and probabilistic models can be made to help
overcome this problem, however. In Parsch’s algorithm, a complete list of potential
RNA helices, along with their A values, are generated. Compatible helices are then
grouped into subsets, which are combined to form potential secondary structure models.
For each set of helices, a total A value is determined by summing the A values for each
individual sequence; the optimal structure is the one with the greatest total A value.

While comparative sequence analysis alone can be successful in finding regions of
conserved structure among RNA sequences, these methods tend not to be globally
accurate because no energy minimization is performed. There is a trade-off between the
number of sequences entered and the accuracy of the results. Inputting more sequences
will yield fewer regions of conservation, but these regions will tend to be more accurate;



inputting fewer sequences will give a greater number of conserved regions with lower
accuracy. In general, the reliability of non-conserved regions is questionable.
Furthermore, many comparative sequence analysis algorithms do not allow non-canonical
base pairs. Algorithms that do allow GU wobble pairs or mismatches generally use a
weighted penalty for structures containing mismatches, but without considering any
thermodynamic implications, structures may be generated that lack biological
significance.

A Genetic Algorithm with Energy Minimization

Chen and coworkers have developed one a comparative sequence analysis algorithm that
uses a very different approach to find common RNA secondary structures for a set of
RNA sequences (Chen, et al., 2000). Their method is a “genetic algorithm”, which is
intended to mimic genetic evolution. Genetic algorithms operate on a population of
tentative solutions, each of which has an encoded representation equivalent to the genetic
material of an individual in nature. The solutions are modified by mutation (random
changes) and crossover (recombination of features), and the modified solutions are
selected by predefined fitness criteria, energy minimization in this case.

Unlike the previously discussed comparative sequence analysis methods, Chen’s method
does not require an alignment to determine a common structure for a series of RNA
sequences. Both the structural energy and structural similarity among sequences of
potential solutions are considered. Free energy is minimized by the nearest neighbor
approach, with penalties or bonuses for other secondary structure elements (since the
focus is on structural similarity, the free energy rules are not as complex as those for
recursive algorithms, see below).

The genetic algorithm proceeds as follows. For each sequence, an initial population of n
structures is generated. Crossover, mutation, and selection are iterated with free energy
as the fitness criterion, until the stability criteria of the structures are reached. For each
sequence, a conservation score cons(7,) is evaluated for each structure 7), in the current
generation of a sequence S,; stem scores cons(s;) are computed for each stem s; in each
structure 7,. Mutations and crossovers are then performed on the current generation. A
total of 3n structures that satisty cons(T) > h. and e(T) < e., where /. is a conservation
parameter and e(7) is the free energy of structure 7, are collected from this iteration. The
next generation for each sequence is then selected for by forming a set F from the unique
3n structures. A distance function d; is calculated for each structure 7; in F. The distance
function is defined as d; = Z;d;;, where dj;, the distance score between structure 7; and 7},
is defined by dj; = 1 — n;/m;;, where n;; is the number of base pairs in common between the
two solutions and m;; is the maximum number of base pairs of the two structures. The
structures are then sorted by ascending values of sc(i) = (best_fit — cons(T;)/d;, and the top
n structures are selected for the next iteration. After the maximum number of generations
and the structures begin to converge, a structure 7’ is eliminated if: (1) 77 is a
substructure of some other structure 7; (2) e(T”) < e(T); (3) cons(T’) < cons(T). In this
way the most conserved structure with the lowest energy is generated. It is also possible
to consider suboptimal structures.



This approach has been very successful for determining conserved structures of tRNAs
and small rRNA subunits. It does have some major limitations, however. As it is
designed for searching structural space for folds that satisfy conditions of structural
conservation and thermodynamic stability, it can only be applied to phylogenicly related
sequences. Because the algorithm applies conservation criteria before fitness criteria to
throw out structures, low energy structures that are not highly conserved in early
iterations might be missed. The authors are also unclear as to whether non-structural
RNAs have enough evolutionary similarity to be candidates for this program, so one must
assume that it is limited to tRNA and rRNA.

The computational time is proportional to n*m*N?, where n is the maximum number of
stems, NV is the number of sequences, and m is the maximum number of structures among
the N sequences. This program is significantly more time-intensive than many others,
including MFOLD (see below).

Structure Optimization by Energy Minimization: The MFOLD Algorithm

Unlike comparative sequence analysis algorithms, which find common structures for a
group of sequences, recursive algorithms find optimal structures for a single sequence.
These programs typically rely exclusively on free energy minimization for determining
the best structures, so the thermodynamic parameters used are of critical importance.

Early recursive algorithms were problematic in many regards. The slow speed of
computers in the early 1980s was perhaps the biggest setback, but thermodynamic
parameters were not very accurate, nor were they always correctly incorporated into
algorithms. Thermodynamic data incorporated into the first RNA secondary structure
prediction algorithms was thought to have an uncertainty of +0.2 to 0.5 kcal for base-
paired helical regions and +1 to 2 kcal for loops (Williams and Tinoco, 1986). In some
programs, the free energy minimization was designed to make the program obtain results
consistent with experiments (Zuker and Stiegler, 1981).

The MFOLD algorithm is recursive and based on free energy minimization. It is capable
of producing suboptimal structures (Walter, et al., 1994). The energy minimization
algorithm used in the current version of MFOLD is described in detail (Mathews, et al.,
1999). It assumes that RNA thermodynamics has a linear dependence on the frequency
of base pair doublets, that is, AG°(duplex) = AG it + ZnjAG’(NN) + Merm-AUAG term-au T
AGgm. The AG%(NN) terms are the greatest contributors, being the free energy
contribution of the jth nearest neighbor with n; occurrences in the sequence. AG’y; is the
translational and rotational energy loss for converting two molecules into one in forming
the first base pair in a sequence. It is assumed to be independent of the length of the
sequence. The Mem auAG erm-au term is a correction factor to account for the fact that
AU base pairs are weaker than GC pairs when at the terminus of a sequence of paired
bases. The AGgy, term comes from the 2-fold rotational symmetry present in self-
complimentary duplexes, but is equal to zero in non-self-complimentary duplexes.



The contribution of hairpin loops of less than 3 unpaired bases is determined by
subtracting the stabilities of the stems, as calculated by nearest neighbor values. For
hairpins with more than 3 unpaired bases (#>3), the energy contribution is approximated
from the loop length and the sequences of the closing base pair and first mismatch by the
equation: AG jpop(n>3) = AG’nif(n) + AG°(stacking of first mismatch) + AG ponus(UU or
GA first mismatch) + AG ponus(GU closure) + AG°penaity(0ligo-C loops). The values for
these parameters are empirically computed constants.

Bulge loops, internal loops, and multibranched loops are destabilizing to RNA structure.
The stability of bulges is computed by AGObulge = AG’ni(n) + AGObp stack(bulges of one nt
only). Values AG®(n<3), where n is the number of unpaired nucleotides in the bulge,
have been experimentally determined. For n = 4, 5, or 6, the free energy is linearly
increased, and for n>6, it is approximated by AG’i(n>6) = AG°,i(6) + 1.75 RT In (n/6).
An approximation is used to model the free energy of internal loops (Serra and Turner,
1995) AGoloop = AGOinit(n 1 + 1’12) + AGoasymm’n 1 - n2’ + AC}OAU/GU closure penalty +
AG°Uu/GA/AG bonus, Where 11 is the number of nucleotides on one side of the loop and n2 is
the number of nucleotides on the other. Again, values for these parameters were obtained
from melting studies (Peritz, et al., 1991). The stability of multibranched loops is
approximated by the equation: AG‘)IOOp =aq1+bn+tch+ AGOdangle, where n 1s the number
of unpaired nucleotides, % is the number of branching helices, and a;, b, and ¢, are
constants. Multibranched loops may have unfavorable contributions from initiation and
favorable contributions from stacking, particularly in cases where coaxial stacking may
exist. Consequentially, additional correctional terms may be included.

Many recursive algorithms have a similar general structure. How algorithms handle
thermodynamic parameters will determine the accuracy of the structures generated.
Secondary structure prediction programs can only be as accurate as the thermodynamic
parameters allow them to be, so better thermodynamic values will generate better folds.
The MFOLD algorithm uses the best thermodynamic data that is available, but it is still
limited by data from a small number of experiments.

Free Energy Minimization and Comparative Sequence Analysis in One: The
Dynalign algorithm

The most reliable method for determining the conserved structure of a series of RNA
sequences is to combine comparative sequence analysis with free energy minimization.
The Dynalign algorithm is one of the most successful for determining a common
structure for two phylogenically related sequences (Mathews and Turner, 2002). Itis a
dynamic algorithm that aligns two sequences and finds a common structure. It uses
thermodynamic parameters described above for the MFOLD algorithm for prediction of
free energies (Mathews, ef al., 1999). This program is perhaps the most accurate written
to date; for tRNAs and 5S rRNAs, Dynalign predicted 86.1% and 86.4% of known base
pairs, compared to 59.7% and 47.8% for free energy minimization alone.

Two phylogenically related sequences are input, and a sequence alignment and common
structure are output. Base pairs are only permitted in the common structure if both



sequences allow a base pair at the position, with one exception: a single inserted base pair
may be included in one structure if it is between two conserved base pairs. The free
energy is minimized by AG%y = AG’%eqi + AG’eqz + (AGmp)(# of gaps). Gaps are
locations in the sequence alignment where a nucleotide in one sequence has no analog in
the other sequence. AG’g, is an empirical factor that penalizes gaps in the alignment; the
value of AG® itself does not depend on matching nucleotides in the alignment, so no
sequence identity is actually required for structure prediction. In fact, sequence identity
is not explicitly scored. Instead it is implicitly considered in the free energy nearest
neighbor parameters.

The algorithm is a four-dimensional dynamic program divided into fill and traceback
steps. The fill steps calculate three free energy arrays, W(ij,k,l), V(i,j,k,[), and W5(i k).
W(i,j,k,l) is the sum of the minimum free energies for nucleotide fragments i to j from the
first sequence and & to / from the second sequence with 7 aligned to k and j aligned to /.
V(ij,k,l) is the same as W(i,j,k,[), except that i is base- paired with j, and £ is based paired
with /. W5(i,k) is the sum of free energies of nucleotide fragments from 1 to 7 in the first
sequence and 1 to k in the second. An array W5(N;,N,), where N; and N, are the lengths
of sequences 1 and 2 respectively, is the lowest free energy sum for a structure common
to both sequences. When these arrays are calculated, the structural conformations that
satisfy the minimal free energies are not explicitly calculated. The traceback steps use
the information in the energy arrays to find the conserved structure that has the lowest
free energy.

This approach has a number of advantages over genetic algorithms or algorithms based
on free energy minimization alone. Though it combines many of the advantages of these
methods and eliminates some of the shortcomings, Dynalign is not without its own
limitations. Like algorithms based on free energy minimization alone, the ultimate
accuracy of Dynalign’s structures is dependent on the quality of the thermodynamic
parameters. Unlike genetic algorithms, Dynalign is unable to align and determine the
structure for more than two common sequences. This is because the dimensionality of
the energy functions is equal to the square of the number of sequences being aligned.
The algorithm finds the common structure of two sequences using four-dimensional
energy functions; to find the structure for three or four sequences it would need to use
nine- or sixteen-dimensional functions. It is unlikely that computers will be fast enough
or have enough memory to handle this kind of data any time soon.

Improving prediction algorithms

The best current RNA secondary structure prediction algorithms are around 80% accurate
for structural RNAs with known structural information. There are many ways that
current algorithms could be improved. I would suggest two very generic improvements
that could have very positive impacts on most algorithm types. The issue of accuracy of
thermodynamic parameters for free energy minimization algorithms has already been
discussed extensively. As mentioned, current thermodynamic parameters were obtained
by performing melting studies on small oligonucleotides, but the stabilizing or
destabilizing effects of longer sequences are unknown. For example, it is unknown



whether there is inherent additional stability for a hairpin containing a 20 base pair stem
versus a 5 base pair stem. Modern automated synthesis methods have made it possible to
synthesize fairly long (>50 nucleotide) RNAs in modest yields, so experiments of this
sort are easily performed. More extensive melting studies, especially on longer loops, to
determine additional stabilization values for hairpins and destabilization values for bulges
and internal loops, could be very helpful to improve current algorithms. An algorithm
that could iteratively consider the effects of increasing loop size in a sequence-specific
manner would have a great deal of utility.

Secondly, most current algorithms do not allow input of information obtained from
experimental data. For example, biochemical experiments may show that certain sets of
bases in an RNA are paired. Rather than simply using this information to confirm the
structure, this information could be used to bias the structure. Such restraints could
drastically reduce computational time, since the number of possible structures would be
greatly reduced. Analogously, a useful additional feature on algorithms that use
phylogenic information to determine common structures would be to allow the user to
input phylogenic restraints based on known relationships. Even better, the algorithms
could be constructed with a database of known phylogenies. This could also drastically
reduce computational time, though it runs the risk of missing unexpected relationships.
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